A paracrine signaling role for serotonin in rat taste buds: expression and localization of serotonin receptor subtypes.

نویسندگان

  • Namik Kaya
  • Tiansheng Shen
  • Shao-Gang Lu
  • Fang-Li Zhao
  • Scott Herness
چکیده

Recent advances in peripheral taste physiology now suggest that the classic linear view of information processing within the taste bud is inadequate and that paracrine processing, although undemonstrated, may be an essential feature of peripheral gustatory transduction. Taste receptor cells (TRCs) express multiple neurotransmitters of unknown function that could potentially participate in a paracrine role. Serotonin is expressed in a subset of TRCs with afferent synapses; additionally, TRCs respond physiologically to serotonin. This study explored the expression and cellular localization of serotonin receptor subtypes in TRCs as a possible route of paracrine communication. RT-PCR was performed on RNA extracted from rat posterior taste buds with 14 prime sets representing 5-HT(1) through 5-HT(7) receptor subtype families. Data suggest that 5-HT(1A) and 5-HT(3) receptors are expressed in taste buds. Immunocytochemistry with a 5-HT(1A)-specific antibody demonstrated that subsets of TRCs were immunopositive for 5-HT(1A). With the use of double-labeling, serotonin- and 5-HT(1A)-immunopositive cells were observed exclusively in nonoverlapping populations. On the other hand, 5-HT(3)-immunopositive taste receptor cells were not observed. This observation, combined with other data, suggests 5-HT(3) is expressed in postsynaptic neural elements within the bud. We hypothesize that 5-HT release from TRCs activates postsynaptic 5-HT(3) receptors on afferent nerve fibers and, via a paracrine route, inhibits neighboring TRCs via 5-HT(1A) receptors. The ole of the 5-HT(1A)-expressing TRC within the taste bud remains to be explored.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autocrine and paracrine roles for ATP and serotonin in mouse taste buds.

Receptor (type II) taste bud cells secrete ATP during taste stimulation. In turn, ATP activates adjacent presynaptic (type III) cells to release serotonin (5-hydroxytryptamine, or 5-HT) and norepinephrine (NE). The roles of these neurotransmitters in taste buds have not been fully elucidated. Here we tested whether ATP or 5-HT exert feedback onto receptor (type II) cells during taste stimulatio...

متن کامل

A Physiologic Role for Serotonergic Transmission in Adult Rat Taste Buds

Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells) and was once thought to be essential to neurotransmission (now understood as purinergic). However, the discovery of the 5-H...

متن کامل

5-HT2A Serotonin Receptor Density in Adult Male Rats’ Hippocampus after Morphine-based Conditioned Place Preference

Introduction: A close interaction exists between the brain opioid and serotonin (5-HT) neurotransmitter systems. Brain neurotransmitter 5-HT plays an important role in the regulation of reward-related processing. However, a few studies have investigated the potential role of 5-HT2A receptors in this behavior. Therefore, the aim of the present study was to assess the influence of...

متن کامل

Expression of Prostatic Acid Phosphatase in Rat Circumvallate Papillae

ATP and its metabolites are important for taste signaling in taste buds, and thus a clearance system for them would play critical roles in maintenance of gustatory function. A previous report revealed that mRNAs for ecto-5'-nucleotidase (NT5E) and prostatic acid phosphatase (PAP) were expressed by taste cells of taste buds, and NT5E-immunoreactivity was detected in taste cells. However, there w...

متن کامل

گیرنده های سروتونین - به کجا می روند؟

Thirty-three Years ago, Gaddum and Picarelli classified the serotonin receptors in the guinea pig ileum into D and M types based on the activity of dibenzyline (D) and morphine (M) to block contractions of intestinal smooth muscle caused by serotonin. The subsequent location of specific ligand binding sites for serotonin in the brain has led to the identification of ten serotonin receptor sub-t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 286 4  شماره 

صفحات  -

تاریخ انتشار 2004